Digital System Design using Verilog
VTU CBCS Question Paper Set 2018

Digital System Design using Verilog

Time: 3 hrs.

Note: Answer any FIVE full questions, selecting at least TWO questions from each part. Max. Marks: 100

PART - A

1 a. Explain with illustration, a simple design methodology followed in IC industry. (10 Marks)
b. With a neat block diagram, explain a design methodology for hardware/software co-design. (10 Marks)

2 a. Design an encoder to use in domestic burglar alarm that has sensors for each of eight zones. Each sensor signal is ‘1’ when intrusion is detected in that zone, and ‘0’ otherwise. Write a verilog code for this encoder, considering the priority such that zone 1 having the highest priority and zone 8 having the least. (10 Marks)
b. Develop a verilog model for a 7-segment decoder that includes an additional input "BLANK", that overrides the BCD input and causes all segment not to lit. (10 Marks)

3 a. Develop a verification test bench for the adder/subtractor that compares the result with the result of addition or subtraction performed on values of type integer. (10 Marks)
b. Develop a verilog model of a 4 to 1 multiplexer that selects among four unsigned 6-bit integers. (05 Marks)
c. Develop a verilog model of a code converter to convert the 4-bit Gray code to a 4-bit unsigned binary integer. (05 Marks)

4 a. Design a circuit that counts 16 clock cycles and produces a control signal, ctrl, that ‘1’ during every eighth and twelfth cycle. (10 Marks)
b. Develop a verilog model of a debounces for a push button switch that uses a debounce interval of 10 ms. Assume the system clock frequency is 50 MHz. (10 Marks)

PART - B

5 a. Design a 64K * 8 bit composite memory using four 16 K * 8 bit components. (10 Marks)
b. Develop a verilog model of a dual port, 4K * 16 bit flow through SRAM, one port allows data to be written and read, while the other port only allows data to be read. (10 Marks)

6 a. Explain the elements of embedded computer with a neat diagram. (10 Marks)
b. Write short notes on cache memory. (05 Marks)
c. Sketch the little-endian and big-endian memory layout for data words. (05 Marks)

7 a. Explain the following I/O synchronization techniques: (i) Polling, (ii) Interrupts. (10 Marks)
b. Design an interface to connect an embedded Gumnut core to a remote temperature sensor. The temperature sensor is an analog device AD7414 with an I2C connection and an alarm O/P that can be connected to warning indicator. (10 Marks)

8 a. Draw the architecture for the Sobel Accelerator data path. (10 Marks)
b. Explain fault models and fault simulation of a circuit. (10 Marks)
Digital System Design using Verilog

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART – A

1. a. Define digital system and briefly explain the needs for digital systems. (05 Marks)
 b. What do you mean by logic levels in digital systems? Explain the TTL logic levels with noise margins. (08 Marks)
 c. Explain the embedded system design with the help of flowchart. (07 Marks)

2. a. Define bit error and explain the generation and checking of parity bit for 8 bit code with circuits. (10 Marks)
 b. Develop a verilog model for a 7-segment decoder. Include an additional input, blank, that overrides the BCD input and causes all segments not to be lit. (10 Marks)

3. a. Develop a verilog behavioral model of an adder/subtractor for 12 bit unsigned binary numbers. The circuit has data inputs x and y, a data output s, a control input mode that is 0 for addition and 1 for subtraction, and an output ovf_unf that is 1 when an addition overflow or a subtraction under flow occurs. (05 Marks)
 b. Explain the floating point numbers with an example. (05 Marks)
 c. Develop a verilog code to convert from binary code to gray code. (10 Marks)

4. a. Develop a verilog model for an interval timer that has clock, load and data input ports and a terminal-count output port. The timer must be able to count intervals of upto 1000 clock cycles, when it reaches zero, it reloads the previously loaded value rather than wrapping around to the largest count value. (07 Marks)
 b. Explain the FSM circuit structure. (05 Marks)
 c. What are asynchronous inputs? Briefly explain the effect of those inputs on digital design and also mention the possible solution. (08 Marks)

PART – B

5. a. Explain asynchronous and synchronous static RAM with timing waveforms. (10 Marks)
 b. Compute the 12 bit ECC word corresponding to the 8 bit data word 01100001. (05 Marks)
 c. Write a note on ASIC concept. (05 Marks)

6. a. Briefly explain the different arithmetic, logical and shift instructions from Gummut instruction set. (12 Marks)
 b. Briefly explain the different techniques, which enable a higher rate of data transfer or memory bandwidth. (08 Marks)

7. a. What are the serial interface standards? Explain any four. (10 Marks)
 b. Mention the needs for ADC and DAC in I/O interfacing. (04 Marks)
 c. Write a note on polling and timers. (06 Marks)

8. a. Define DFT and BIST, design a 4 bit LFSR for generating pseudo-random test vectors. (10 Marks)
 b. Explain area and timing optimization. (10 Marks)

* * * * *